Ramsey Spanning Trees and their Applications

Ittai Abraham (iabraham@vmware.com),

Shiri Chechik (schechik@post.tau.ac.il),

> The Metric Ramsey Problem

Given a metric (*X*, *d*), what is the largest subset $M \subseteq X$ of a metric space that can be embedded into a Hilbert space?

Mendel and Naor [MN07], via a randomized algorithm, showed that every *n*-point metric (X, d) has a subset $M \subseteq X$ of size at least $n^{1-1/k}$ that embeds into an ultrametric (and thus also into Hilbert space) with distortion at most 128*k*, for a parameter $k \ge 1$.

Theorem 1 For every *n*-point metric space and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ that can be embedded into an ultrametric with distortion 8k - 2. Moreover, there is a deterministic polynomial algorithm that finds M and its embedding.

Application to Distance Oracles

A distance oracle is a succinct data structure that (approximately) answers distance queries. The properties of interest are size, stretch and query time. Using Theorem 1 we can construct $O(kn^{1/k})$ ultrametrics $\{U_i\}_i$, such that for every $v \in X$, there is i_v , such that for every $u \in X$

 $\operatorname{dist}(v, u) \leq \operatorname{dist}(v, u, U_{i_v}) \leq 16k \cdot \operatorname{dist}(v, u)$

Given a query *u*, *v*, our distance oracle simply returns **dist**(*v*, *u*, U_{i_n}).

The query time is constant. The required space is $O(kn^{1+\frac{1}{k}})$.							
Distance Oracle	Stretch	Size	Query time	Is deterministic?			
[TZ05]	2k - 1	$O(k \cdot n^{1+1/k})$	O(k)	no			
[MN07]	128 <i>k</i>	$O(n^{1+1/k})$	O(1)	no			
[WN13]	$(2+\epsilon)k$	$O(k \cdot n^{1+1/k})$	$O(1/\epsilon)$	no			
[Che14]	2k - 1	$O(k \cdot n^{1+1/k})$	O(1)	no			
[Che15]	2k - 1	$O(n^{1+1/k})$	O(1)	no			
[RTZ05]	2k - 1	$O(k \cdot n^{1+1/k})$	O(k)	yes			
[WN13]	2k - 1	$O(k \cdot n^{1+1/k})$	$O(\log k)$	yes			
This paper	$8(1+\varepsilon)k$	$O(n^{1+1/k})$	$O(1/\epsilon)$	yes			
This paper	2k - 1	$O(k \cdot n^{1+1/k})$	O(1)	yes			

Michael Elkin (elkinm@cs.bgu.ac.il),

Ramsey Spanning Trees (Main result)

Ramsey Spanning Trees is a natural extension of the metric Ramsey problem to graphs. Given a weighted graph G = (V, E), what is the largest subset $M \subseteq V$ of vertices, such there is a spanning (sub-graph) tree T of G, with small stretch w.r.t all pairs in $M \times V$? **Theorem 2** Let G = (V, E) be a weighted graph, and a parameter $k \ge 1$. There exists a spanning tree T of G, and a set $M \subseteq V$ of size at least $n^{1-1/k}$, such that for every $v \in M$ and every $u \in V$ it

holds that $\operatorname{dist}(u, v, T) \leq O(k \log \log m) \cdot \operatorname{dist}(v, u, G)$. **Corollary 1** *Let* G = (V, E) *be a weighted graph on n vertices, and fix a parameter* $k \ge 1$ *. There is* a polynomial time deterministic algorithm that finds a collection \mathcal{T} of $k \cdot n^{1/k}$ spanning trees of G, and a mapping home : $V \to \mathcal{T}$, such that for every $u, v \in V$ it holds that

 $dist(v, u, home(v)) \le O(k \log \log n) \cdot dist(v, u, home(v))$

Compact Routing

A routing scheme in a network is a mechanism that allows packets to be delivered from any node to any other node. Each node can forward incoming data by using local information stored at its *routing table*, and the (short) packet's *header*. During preprocessing phase, each node is assigned a routing table and a short label. In the routing phase, each node receiving a packet should make a local decision, based on its own routing table and the packet's header (which usually contains the label of the destination) where to send the packet. The *routing decision time* is the time required for a node to make this local decision. The *stretch* of a routing scheme is the worst ratio between the length of a path on which a packet is routed, to the shortest possible path.

Application to Compact Routing

For any tree T = (V, E) (where |V| = n), there is a routing scheme with stretch 1 that has routing tables of size O(b) and labels of size $(1 + o(1)) \log_h n$. The decision time in each vertex is O(1).

Thus, given the collection \mathcal{T} of trees from Corollary 1, the label of each vertex v consist of **home**(*v*) and the label of *v* in **home**(*v*). The table is the union of the tables in all the $k \cdot n^{1/k}$ trees. We conclude,

Theorem 3 Given a weighted graph G = (V, E) on n vertices and integer parameters k, b > 1, there is a routing scheme with stretch $O(k \log \log n)$ that has routing tables of size $O(k \cdot b \cdot n^{1/k})$ and labels of size $(1 + o(1)) \log_h n$. The decision time in each vertex is O(1).

	Parameter range	Label	Table	Stretch		
[TZ01]	$k \ge 1$	$O(k \log n)$	$O(k \cdot n^{\frac{1}{k}})$	4k - 3		
Theorem 3	$k \ge 1$	$(1+o(1))\log n$	$O(k \cdot n^{\frac{1}{k}})$	$O(k \log \log n)$		
[TZ01]	$k = \log n$	$O(\log^2 n)$	$O(\log n)$	$O(\log n)$		
Theorem 3	$k = \frac{\log n}{\log \log n}$	$(1+o(1))\log n$	$O(\frac{\log^2 n}{\log\log n})$	$O(\log n)$		
Theorem 3	$k = \log n$	$(1+o(1))\log n$	$O(\log n)$	$O(\log n \log \log n)$		
Our scheme is arguably simpler then [TZ01], and has extremely small label size.						

Arnold Filtser (arnoldf@cs.bgu.ac.il),

Ofer Neiman (neimano@cs.bgu.ac.il)

0.1

0.2

0.3

 $w_{r+\frac{b-a}{2k}} \leq w_{r-\frac{b-a}{2k}} \cdot \left(\frac{w_b}{w_a}\right)^k$

In our setting we are very sensitive to constant factors in this charging scheme, because these constant are multiplied throughout the recursion. In particular, we must avoid a range in [*lo*, *hi*] that contains more than half of the marked vertices. To this end, we sometimes "cut backwards", that is, the "saved" vertices are those out of $W_{r+\frac{\Delta}{c\cdot k \cdot \log \log n}}$.

[Che14] Shiri Chechik. Approximate distance oracles with constant query time. In STOC, 2014. [Che15] Shiri Chechik. Approximate distance oracles with improved bounds. In STOC, 2015. [MN07] Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. JEMS, 2007. [RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate distance oracles and spanners. In ICALP, 2005.

[TZ01] M. Thorup and U. Zwick. Compact routing schemes. In SPAA, 2001. [TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 2005. [WN13] Christian Wulff-Nilsen. Approximate distance oracles with improved query time. SODA, 2013.

References