
Ramsey Spanning Trees and their Applications
Ittai Abraham (iabraham@vmware.com), Shiri Chechik (schechik@post.tau.ac.il), Michael Elkin (elkinm@cs.bgu.ac.il), Arnold Filtser (arnoldf@cs.bgu.ac.il), Ofer Neiman (neimano@cs.bgu.ac.il)

> The Metric Ramsey Problem

Given a metric (X, d), what is the largest subset M ⊆ X of a metric space that can be em-
bedded into a Hilbert space?
Mendel and Naor [MN07], via a randomized algorithm, showed that every n-point metric
(X, d) has a subset M ⊆ X of size at least n1−1/k that embeds into an ultrametric (and thus
also into Hilbert space) with distortion at most 128k, for a parameter k ≥ 1.

Theorem 1 For every n-point metric space and k ≥ 1, there exists a subset M of size n1−1/k that
can be embedded into an ultrametric with distortion 8k− 2. Moreover, there is a deterministic poly-
nomial algorithm that finds M and its embedding.

> Application to Distance Oracles

A distance oracle is a succinct data structure that (approximately) answers distance queries.
The properties of interest are size, stretch and query time.
Using Theorem 1 we can construct O(kn1/k) ultrametrics {Ui}i, such that for every v ∈ X,
there is iv, such that for every u ∈ X

dist(v, u) ≤ dist(v, u, Uiv
) ≤ 16k · dist(v, u)

Given a query u, v, our distance oracle simply returns dist(v, u, Uiv
).

The query time is constant. The required space is O(kn1+1
k).

Distance Oracle Stretch Size Query time Is deterministic?
[TZ05] 2k− 1 O(k · n1+1/k) O(k) no
[MN07] 128k O(n1+1/k) O(1) no
[WN13] (2 + ε)k O(k · n1+1/k) O(1/ε) no
[Che14] 2k− 1 O(k · n1+1/k) O(1) no
[Che15] 2k− 1 O(n1+1/k) O(1) no
[RTZ05] 2k− 1 O(k · n1+1/k) O(k) yes
[WN13] 2k− 1 O(k · n1+1/k) O(log k) yes
This paper 8(1 + ε)k O(n1+1/k) O(1/ε) yes
This paper 2k− 1 O(k · n1+1/k) O(1) yes

G U1 Us
dist(v, u)?

dist(v, u,Uiv)

> Ramsey Spanning Trees (Main result)

Ramsey Spanning Trees is a natural extension of the metric Ramsey problem to graphs. Given
a weighted graph G = (V, E), what is the largest subset M ⊆ V of vertices, such there is a
spanning (sub-graph) tree T of G, with small stretch w.r.t all pairs in M×V?

Theorem 2 Let G = (V, E) be a weighted graph, and a parameter k ≥ 1. There exists a spanning
tree T of G, and a set M ⊆ V of size at least n1−1/k, such that for every v ∈ M and every u ∈ V it
holds that dist(u, v, T) ≤ O(k log log m) · dist(v, u, G).

Corollary 1 Let G = (V, E) be a weighted graph on n vertices, and fix a parameter k ≥ 1. There is
a polynomial time deterministic algorithm that finds a collection T of k · n1/k spanning trees of G,
and a mapping home : V → T , such that for every u, v ∈ V it holds that

dist(v, u, home(v)) ≤ O(k log log n) · dist(v, u, home(v))

> Compact Routing

A routing scheme in a network is a mechanism that allows packets to be delivered from any
node to any other node. Each node can forward incoming data by using local information
stored at its routing table, and the (short) packet’s header. During preprocessing phase, each
node is assigned a routing table and a short label. In the routing phase, each node receiv-
ing a packet should make a local decision, based on its own routing table and the packet’s
header (which usually contains the label of the destination) where to send the packet. The
routing decision time is the time required for a node to make this local decision. The stretch of
a routing scheme is the worst ratio between the length of a path on which a packet is routed,
to the shortest possible path.

Table
00101
11000
10010
.
.

Header
Content

Destination
Label

Content

> Application to Compact Routing

For any tree T = (V, E) (where |V| = n), there is a routing scheme with stretch 1 that has
routing tables of size O(b) and labels of size (1 + o(1)) logb n. The decision time in each
vertex is O(1).
Thus, given the collection T of trees from Corollary 1, the label of each vertex v consist of
home(v) and the label of v in home(v). The table is the union of the tables in all the k · n1/k

trees. We conclude,
Theorem 3 Given a weighted graph G = (V, E) on n vertices and integer parameters k, b > 1,
there is a routing scheme with stretch O(k log log n) that has routing tables of size O(k · b · n1/k)
and labels of size (1 + o(1)) logb n. The decision time in each vertex is O(1).

Parameter range Label Table Stretch
[TZ01] k ≥ 1 O(k log n) O(k · n1

k) 4k− 3
Theorem 3 k ≥ 1 (1 + o(1)) log n O(k · n1

k) O(k log log n)
[TZ01] k = log n O(log2 n) O(log n) O(log n)

Theorem 3 k =
log n

log log n (1 + o(1)) log n O(
log2 n

log log n) O(log n)
Theorem 3 k = log n (1 + o(1)) log n O(log n) O(log n log log n)

Our scheme is arguably simpler then [TZ01], and has extremely small label size.

> Technical ideas in Theorem 2

0.1 Petal Decomposition

Petal decomposition is an iterative
method to build a spanning tree. In each
level, the current graph is partitioned into
smaller diameter pieces, called petals,
and a single central piece, which are then
connected by edges in a tree structure.
Each of the petals is a ball in a certain
metric. The produced spanning tree has
diameter (O(∆)) which is proportional
to the diameter (∆) of the graph, while
allowing large freedom for the choice of
radii of the petals (Ω(∆)).

x0

x1

y1 = t0

t1
t2

x2

x3

x8

x7
x5

x6

x4

t3

t8

t7

t5

t6

t4
y2

y8
y7

y5

y6

y4

y3

X1 X2

X3

X8

X7
X5

X6

X4

X0

0.2 Padding

x0

y
∆

∆/ρ

A
A′G

Consider a vertex y ∈ A′ ⊆ A A is a subset of ver-
tices in the graph G with center x0. The radius of
A (w.r.t x0) is ∆. A′ is a subset of A (denoted by the
dashed line). If B(y, ∆/ρ, G) ⊆ A′, we say that the
vertex y is padded by A′ w.r.t A. y is fully padded,
if it is padded in all the levels.

0.3 Choosing a Radius

We are given range [lo, mid] of length ∆/8. For each r ∈ [lo, mid], Wr denotes the petal
with radius r. wr denotes the number of vertices in Wr which are fully padded so far.
For radius r, all vertices in Wr+ ∆

c·k·log log n
\Wr− ∆

c·k·log log n

ceased being padded. We will ensure that large frac-
tion of the vertices will be “saved”.
First choose [a, b] ⊆ [lo, mid] such that b− a = R

2L and
wa ≥ w2

b/|S| (|S| is the number of active vertices).
Then we pick r ∈ [a, b] such that

wr+b−a
2k
≤ wr−b−a

2k
·
(

wb
wa

)1
k .

In our setting we are very sensitive to constant fac-
tors in this charging scheme, because these constant
are multiplied throughout the recursion. In partic-
ular, we must avoid a range in [lo, hi] that contains
more than half of the marked vertices. To this end,
we sometimes "cut backwards", that is, the “saved”
vertices are those out of Wr+ ∆

c·k·log log n
.

x0

t

Wlo Wr Whi

References
[Che14] Shiri Chechik. Approximate distance oracles with constant query time. In STOC, 2014.

[Che15] Shiri Chechik. Approximate distance oracles with improved bounds. In STOC, 2015.

[MN07] Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. JEMS, 2007.

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate distance oracles and spanners. In
ICALP, 2005.

[TZ01] M. Thorup and U. Zwick. Compact routing schemes. In SPAA, 2001.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 2005.

[WN13] Christian Wulff-Nilsen. Approximate distance oracles with improved query time. SODA, 2013.

1

